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Introduction

what we would like to understand

does an expanding system of quarks and gluons, created in a HIC

• thermalize?

• become isotropic?

• if so, on what time scale?

one should be able to answer this question theoretically in the limit of weak coupling

αs(Q) � 1
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Introduction

weak coupling → perturbation theory, Boltzmann equation

gAµ ∼ ∂µ → naive perturbation theory breaks down due to large fields

gluon saturation, classical field approximation

common lore:

• small x-saturation, CGC, gluons are produced with p⊥ ∼ Q � ΛQCD

• right after collision when t ∼ Q−1: f ∼ g−2

• therafter: expansion → f < g−2

saturated gluon field may be crucial much longer!
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Anisotropic plasma

• τ <∼Q−1: production of ”hard”

gluons with

p ∼ Q

(isotropic momentum distribution)

• expansion in z-direction →

pz � p⊥
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Plasma instabilties

anisotropic plasmas are unstable [Weibel,...]
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exponential growth of small fluctuations of gauge fields/hard gluon color distribution

should play a role in HIC [Mrówczyński]

5



Saturation of plasma instabilties

QED: growth stops when hard particle momentum is changed by O(1) within t ∼ k−1

→ rapid isotropization

corresponds to gauge field amplitudes gA ∼ Q

gluon self-interaction → QCD plasma instabilites could be very different from QED

growth should stop when EOM become non-linear, gA ∼ ∂ ∼ k � Q

or maybe not? abelianization ? [Arnold,Lenaghan]

difficult non-linear problem!
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Saturation of plasma instabilties

1+1 dimensional systems, Aµ(t, z), δf(t, z,p)

• simpler problem

• physically motivated

1+1 dimensional simulations

show continued growth

[Romatschke,Rebhan,Strickland]
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The fate of instabilities in 3+1 dimensions
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[Arnold, Moore, Yaffe]

not understood:

• why are 1+1 and 3+1

dimensions so different?

• how much do the initial

conditions matter?
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Are plasma instabilities relevant?

Bottom up thermalization [Baier, Mueller, Son, Schiff]

assumption: boost invariant occupation number f = f(τ, η − y,p⊥)

pz is broadened by elastic scattering → (in the early stage)

pz ∼ Q(Qτ)−1/3

unstable modes at saturation: field strength ∼ k2/g

random walk through many domains of size k−1 →

pz ∼ Q(Qτ)−1/4

more isotropic than in the early stage of bottom up [DB], only lower limit on pz
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Are plasma instabilities relevant?

exponential growth of fluctuations only when

growth rate γ >∼
1

τ
(= expansion rate )

parametrically in Bottom Up

γ ∼
Q

√
Qτ

OK for Qτ >∼ 1

how big is big?
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Are plasma instabilities relevant?
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expanding system of SU(2) gauge

fields on the lattice

[Romatschke, Venugopalan]

analytic estimates: unstable modes grow when Qτ ∼ 20 [Rebhan,Romatschke]
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Simulation of strongly anisotropic plasmas

system with ”hard” classical particles + soft classical fields

neglect backreaction on hard particle momentum distribution f̄(p) ”hard loop

effective theory”

(DµFµν)a = g

∫
d3p

(2π)3
vνfa,

(v · Df)a + gvµF a
µi

∂f̄

∂pi
= 0

we use the W field method, SU(2) gauge group

W a(x,v) ≡ 4πg

∞∫

0

dpp2

(2π)3
fa(x,vp)

• weak sphaleron rate in thermal equilibrium (isotropic f̄) [Bödeker,Moore,Rummukainen]

• plasma instabilities in SU(2) [Arnold,Moore,Yaffe]
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Simulation of strongly anisotropic plasmas

we expand W , f̄ in spherical harmonics

f̄(pv) =

Lasym∑
l

f̄l(p)Yl0(v)

W (x,v) =

Lmax∑
l,m

Wlm(x)Ylm(v)

we use similar techniques as Arnold, Moore, Yaffe but

• 5 different values for the anisotropy, both weaker and much stronger

• large lattices (up to 2403) with a large number of W -fields (up to Lmax = 240,

i.e., 14250 fields in addition to Aa
i )
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Simulation of strongly anisotropic plasmas

for each Lasym we try to maximally localize the distribution along the xy-plane

Arnold-
Moore-
Yaffe
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Growth rate in weak field regime
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much larger range of unstable

modes for large asymmetry
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Growth rate in weak field regime
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Results: growth of energy for weak anisotropy

little growth beyond weak field regime

lattice UV modes far from saturated

consistend with Arnold, Moore, Yaffe (Lasym = 6)
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Results: growth of energy for strong anisotropy

quasi-exponential growth beyond weak field regime

stops when lattice UV modes saturate, aA ∼ 1

how far does it continue when a → 0?
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Coulomb gauge spectrum

gauge fixed to Coulomb gauge, fsoft(k) ∝ kA(k)
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Coulomb gauge spectrum for weak anisotropy

weak anisotropy remains IR dominated
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UV avalanche?

Rapid growth of UV modes first observed by Dumitru, Nara, Strickland

Romatschke, Venugopalan: UV modes become unstable when backreaction sets in?

we find UV avalanche without backreaction

dependence on initial conditions?

dependence on volume?

more work is necessary!
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